Algebraic Identitites by Gourav Tomar
Ex.1 x2 + 1/x2 = 7 Then find the Value of x3 + 1/x3.
Sol. (x + 1//x)2 = x2 + 1/x2 + 2*x*1/x = 7+2 = 9
(x + 1/x) = √9 = 3
Cubing both sides
x + 1/x = 33
x3 + 1/x3 + 3*3 = 27
x3 + 1/x3 = 27-9 = 18
Shortcut method using formula
x2 + 1/x2 =7
x + 1/x = √(7+2) = 3
x3+ 1/x3 = 33 - 3*3 = 27-9= 18 Ans.
Ex.2 If x = 3 + 2√2 then the value of √x - 1/√x ?
Sol. x = 3+ 2 √2
Rationalize the equation
1/x = 1/ (3+2√2) = 1/(3+2√2) * (3-2√2)/(3-2√2) = (3-2√2) /(9-8) = 3-2√2
(√x- 1/√x)2 = x +(1/x) - 2
Insert value of x in above equation
3 + 2√2 + 3 - 2√2 -2 = 4
4 =(√x- 1/√x)2
√x - 1/x = 2 Ans
Ex.3 If m + 1/ (m-2) = 4 Then find the value of (m-2)2 + 1(m-2)2 .
Sol. m + 1/(m-2) = 4
(m-2) + 1/(m-2) = 2
Now,
(m-2)2 + 1/(m-2)2 = [(m-2)2+ 1/(m-2)2]-2
22-2 = 2 Ans
Ex.4 If x= 4ab/a+b then find the value of (x+2a)/(x-2a) + (x+2b)/(x-2b).
Sol. x = 4ab/(a+b)
x/2a = 2b/a+b
By componendo and Dividendo
(x+2a)/(x-2a) = (3b+a)/b-a
Similarily,
(x+2b)/(x-2b) = (3a+b)/(a-b)
(x+2a)/(x-2a) + (x+2b)/(x-2b) = (3b+a)/(b-a) + 3a+b)/(a-b)
(3b+a-3a-b)/b-a = (2b-2a)/b-a
2(b-a)/(b-a) = 2 Ans
Ex.5 If x = 2- 21/3 +22/3 Then find the value of x3- 6x2 + 18x .
Sol. x= 2- 21/3 + 22/3
x-2 = 21/3 + 22/3.
On cubing both the sides
x3 - 8 - 6x2 + 12x = 4 -2 -6 (x-2).
x3 - 6x2 + 12x + 6x = 4-2+12+8
x3- 6x2 + 18x = 22 Ans
Ex.6 a2 = b+c, b2 = a+c, and c2= a+b then find the Value of 1/(1+a) + 1/(1+b) + 1/(1+c),.
Sol. 1/(1+a) + 1/(1+b) + 1/(1+c)
Multiply and divide a/a ,b/b, c/c respectively in the above equation.
a/(a+a2) + b/(b+b2) + c/(c+c2)
Put values of a2, b2 , c2 in the above equation
a/(a+b+c) + b/(a+b+c) + c/(a+b+c)
(a+b+c)/(a+b+c) = 1 Ans
Ex.7 If a/(1-a)+ b/(1-b) + 1/(1-c) = 1 Then find the value of 1/(1-a) +1/(1-b) + 1/(1-c) .
Sol. a/(1-a)+ b/(1-b) + 1/(1-c) = 1
Add 1 in each term in the above equation
[a/(1-a) + 1] + [1/(1-b) + 1] + [1/(1-c) + 1] = 1+3
(a+1-a)/(1-a) + (b+1-b)/(1-b) + (c+1-c)/(1-c) = 4
1/(1-a) +1/(1-b) + 1/(1-c) = 4 Ans.
Ex.8 If a, b, c are real and a2 + b2 + c2 = 2(a-b-c)-3, then value of 2a-3b+4c ?
Sol. a2+b2+c2 = 2a-2b-2c-3
a2-2a+b2+2b+c2+2c+1+1+1=0
(a2-2a+1) + (b2+2b+1) + (c2+2c+1) = 0
(a-1)2 + (b+1)2 + (c+1)2.
a-1 = 0 , b-1=0 , c-1= 0
a=1, b=-1, c=-1
2a-3b+4c = 2+3-4 = 1 Ans
Ex.9 a/b = 25/6, then the value of (a2-b2)/(a2+b2) .
Sol. a2/b2 = 252/62 = 625/36
By componendo and dividendo,
(a2-b2)/(a2+b2) = (625-36)/(625+36) = 589/661 Ans.
Ex.10 If x+y+z = 6 and x2+y2+z2 = 20 then the value of x3+y3+z3-3xyz is?
Sol. x+y+z = 6
On squaring,
x2+y2+z2+2xy+2yz+2zx = 36
20+2(xy+yz+zx) = 36
xy+yz+zx = 8
x3+y3+z3-3xyz = (x+y+z)(x2+y2+z2-xy-yz-zx)
6(20-8)
72 Ans
Ex.11 If x + 1/x = 2 then x2013 + 1/x2014?
Sol. x + 1/x = 2
x2 + 1 = 2x
x2-2x+1 = 0
(x-1)2= 0
x = 1
x2013 + 1/x2014 = 1+1 = 2 Ans