Algebraic Identities With solved examples

Algebra

Algebraic Identitites by Gourav Tomar


Question based on algebraic identities

Ex.1 x2 + 1/x2 = 7 Then find the Value of x3 + 1/x3.

Sol. (x + 1//x)2 = x2 + 1/x2 + 2*x*1/x = 7+2 = 9

(x + 1/x) = √9 = 3

Cubing both sides

x + 1/x = 33

x3 + 1/x3 + 3*3  = 27 

x3 + 1/x3 = 27-9 = 18

Shortcut method using formula

x2 + 1/x2 =7

x + 1/x = √(7+2) = 3

x3+ 1/x3 = 33 - 3*3 = 27-9= 18 Ans.

Ex.2 If x = 3 + 2√2 then the value of √x - 1/√x ?

Sol. x = 3+ 2 √2 

Rationalize the equation

1/x = 1/ (3+2√2) = 1/(3+2√2) * (3-2√2)/(3-2√2) = (3-2√2) /(9-8) = 3-2√2

(√x- 1/√x)2 = x +(1/x) - 2

Insert value of  x in above equation

3 + 2√2 + 3 - 2√2 -2 = 4

4 =(√x- 1/√x)2

√x - 1/x = 2  Ans

Ex.3 If m + 1/ (m-2) = 4 Then find the value of (m-2)2 + 1(m-2)2 .

Sol. m + 1/(m-2) = 4

(m-2) + 1/(m-2) = 2 

Now, 

(m-2)2 + 1/(m-2)2  = [(m-2)2+ 1/(m-2)2]-2 

22-2 = 2 Ans

Ex.4 If x= 4ab/a+b then find the value of (x+2a)/(x-2a) + (x+2b)/(x-2b).

Sol. x = 4ab/(a+b) 

 x/2a = 2b/a+b

By componendo and Dividendo

(x+2a)/(x-2a) = (3b+a)/b-a

Similarily,

(x+2b)/(x-2b) = (3a+b)/(a-b)

(x+2a)/(x-2a) + (x+2b)/(x-2b) = (3b+a)/(b-a) + 3a+b)/(a-b)

(3b+a-3a-b)/b-a = (2b-2a)/b-a

2(b-a)/(b-a) = 2 Ans

Ex.5 If x = 2- 21/3 +22/3 Then find the value of x3- 6x2 + 18x .

Sol. x= 2- 21/3 + 22/3

x-2 = 21/3 + 22/3.

On cubing both the sides

x3 - 8 - 6x2 + 12x = 4 -2 -6 (x-2).

x3 - 6x2 + 12x + 6x = 4-2+12+8

x3- 6x2 + 18x = 22 Ans

Ex.6 a2 = b+c, b2 = a+c, and c2= a+b then find the Value of 1/(1+a) + 1/(1+b) + 1/(1+c),.

Sol. 1/(1+a) + 1/(1+b) + 1/(1+c)

Multiply and divide a/a ,b/b, c/c respectively in the above equation.

a/(a+a2) + b/(b+b2) + c/(c+c2)

Put values of a2, b2 , c2 in the above equation

a/(a+b+c) + b/(a+b+c) + c/(a+b+c)

(a+b+c)/(a+b+c) = 1 Ans

Ex.7 If a/(1-a)+ b/(1-b) + 1/(1-c) = 1 Then find the value of 1/(1-a) +1/(1-b) + 1/(1-c) .

Sol. a/(1-a)+ b/(1-b) + 1/(1-c) = 1

Add 1 in each term in the above equation

[a/(1-a) + 1] + [1/(1-b) + 1] + [1/(1-c) + 1] = 1+3

(a+1-a)/(1-a) + (b+1-b)/(1-b) + (c+1-c)/(1-c) = 4

1/(1-a) +1/(1-b) + 1/(1-c) = 4  Ans.

Ex.8 If a, b, c are real and a2 + b2 + c2 = 2(a-b-c)-3, then value of 2a-3b+4c ?

Sol. a2+b2+c2 = 2a-2b-2c-3

a2-2a+b2+2b+c2+2c+1+1+1=0

(a2-2a+1) + (b2+2b+1) + (c2+2c+1) = 0

(a-1)2 + (b+1)2 + (c+1)2.

a-1 = 0 , b-1=0 , c-1= 0

a=1, b=-1, c=-1 

2a-3b+4c = 2+3-4 = 1 Ans

Ex.9 a/b = 25/6, then the value of (a2-b2)/(a2+b2) .

Sol. a2/b2 = 252/62 = 625/36

By componendo and dividendo,

(a2-b2)/(a2+b2) = (625-36)/(625+36) = 589/661  Ans.

Ex.10 If x+y+z = 6 and x2+y2+z2 = 20 then the value of x3+y3+z3-3xyz is?

Sol. x+y+z = 6

On squaring,

x2+y2+z2+2xy+2yz+2zx = 36

20+2(xy+yz+zx) = 36

xy+yz+zx = 8

x3+y3+z3-3xyz = (x+y+z)(x2+y2+z2-xy-yz-zx)

6(20-8)

72 Ans

Ex.11 If x + 1/x = 2 then x2013 + 1/x2014?

Sol. x + 1/x = 2

x2 + 1 = 2x

x2-2x+1 = 0

(x-1)2= 0

x = 1

x2013 + 1/x2014  = 1+1 = 2 Ans

Lalit Tomar

Exams Passed. SSC CGL-Pre (2013,2017,2018,2019).SSC CHSL(2016,2017,2018,). SSC CHSL pre,mains,typing(2018), IBPS PO (2013) Now teaching students to prepare for Govt. jobs part-time

Post a Comment

Previous Post Next Post